

Evolution, current state of the art, and interpretation of aircraft-based methane emission quantification at the natural gas basin-level

Dr. Stefan Schwietzke, Research Scientist

Ex/onMobil

NOAA Earth System Research Lab / University of Colorado, Boulder

#WGC2018 FUELING THE FUTURE

HOST ASSOCIATION

Importance of methane (CH₄) emissions and the oil and gas (O&G) sector

CH₄

~25% radiative forcing impact of CO₂

3x atmospheric growth relative to CO₂ *

0&G

#WGC2018

FUELING THE FUTURE

~25% of global anthropogenic CH₄ emissions Air quality & health **, energy, mitigation technologies

Sources: NOAA, Saunois et al. 2016, Schwietzke et al. 2016; * since 1750 ** co-emitted volatile organic compounds

The challenge of understanding and mitigating O&G CH₄ emissions

- **Source complexity:** CH₄ (fugitives, venting) vs. CO₂ (combustion)
 - Size: 10⁶ wells, 10³ "large" facilities, 10⁶ pipeline miles in U.S. alone
 - Spatio-temporal variability: Emissions vary by basin/facility & over time
 - Few measurements: Small sample size, not continuous
 - Top-down vs. bottom-up difference: Explanations?

Field measurement study design to address these challenges

Fayetteville Shale study team (public-private partnership)

Research and administrative team

Sponsors and/or site access / data providers

AGA American Gas Association

Site access / data providers

Aircraft-based CH₄ measurements at the O&G basin-level

One day of aircraft data in the Fayetteville Shale study area

First spatially-resolved aircraft-based CH₄ emission estimates for a basin

Schwietzke et al., 2017 (Environ. Sci. Techn.)

Spatial top-down and bottom-up agreement in hourly emissions

Substantial episodic emissions midday during aircraft sampling

• "Leak rate" in Western half of study area double compared to Eastern half

✓ Operator hourly activity data✓ Hourly bottom-up emission inventory

Manual liquid unloadings explain:

- 1/3 of total midday CH₄ emissions
- 2/3 of West-East difference in leak rate
- CH₄ emissions peaked midday when atmospheric conditions are ideal for aircraft sampling
 - In contrast, emission inventories generally report long-term (e.g. annual) averages
 - Investigate if inventory is representative of snapshot aircraft measurements!

Summary

- Detailed O&G activity data help understand concurrently measured CH₄ emissions (via aircraft) more mechanistically
 - Mechanistic understanding is the basis for effective emission mitigation
 - Additional scientific advances in this study reduced biases and uncertainties in estimated CH₄ emissions (see conference paper)
 - Achieved through public-private partnership in this study
 - Three decades of scientific method development precede O&G aircraft-based CH₄ measurements (see conference paper)