

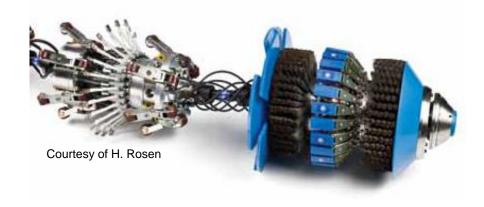
Pipeline Integrity Management: Conventional or Digitalisation & Intelligent?

Mohd Nazmi, Custodian (Pipeline Integrity)/ Group Technical Authority

Group Technical Solutions, PETRONAS Project Delivery

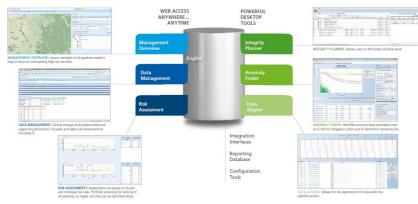
PRINCIPAL SPONSORS

PETRONAS operates more than 10,000 km of pipelines (73% offshore & 27% onshore). Many intra platform pipelines (< 5 km) have serious inspection issues



Courtesy of www.theodora.com

- No pigging facilities e.g. launcher & receiver (modification).
- Low pressure, low flow require auxiliary pumping.
- Deferment due to shutdown.


In addition to that, current inspection technology and system/software have limitations...

- For non ideal case, require shutdown and auxiliary pumping.
- Multiple pigging activities that can disrupts operations.
- For 'un-piggable' pipeline, intelligent pigging (IP) requires modification that incurred additional cost.
- Specific IP tool can only inspect specific pipeline defects.

SYNERGI PIPELINE – SYSTEM OVERVIEW

Courtesy of DNV GL

- No continuous and real time risk and integrity prediction.
- Lack of 'intelligence' in current PIMS system/software.

Thus, PETRONAS develops i-PIMS[™] (Intelligent Pipeline Integrity Management System) to address the issues plaguing PETRONAS' pipelines

Courtesy of BIG DATA

"BIG DATA" DATABASE
Type of data: IP history,
Online operation data

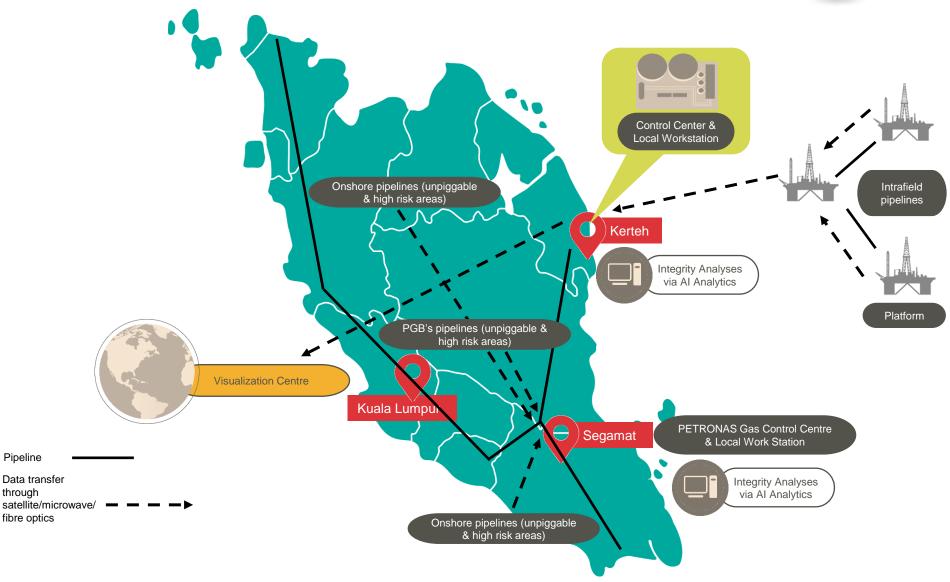
Online inspection data

ANALYTICS/ARTIFICIA

INTELLIGENCE SYSTEM

- INTEGRITY HEALTH STATUS
- RISK STATUS
- REPAIR PLAN

PHASE 3


ROBOTIC REPAIR TECHNOLOGY

Courtesy of Universiti Teknologi PETRONAS

#WGC2018 FUELING THE FUTURE The operational concept of i-PIMSTM will be on-line data extraction at the platform/field transferred to central data center for analyses and real-time integrity status monitoring

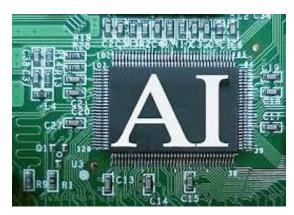
i-PIMSTM: Revolutionizing Pipeline Integrity Management

Ultra Long Range Acoustic Technology (ULRAT™)

Courtesy of TWI & Velosi

Existing Technology:

• It is a LRUT (long range ultrasonic) "clamp-sensor" only applicable up to 300 m length.


ULRAT™ Development:

- Developed based upon existing acoustic technology.
- Using concept of LRUT and infrasound capable to inspect up to 2-3 km per sensor.
- Provide real-time data from continuous monitoring.
- Sensors are able to operate across a wide range of temperatures from -40°C to +125°C, onshore & offshore.

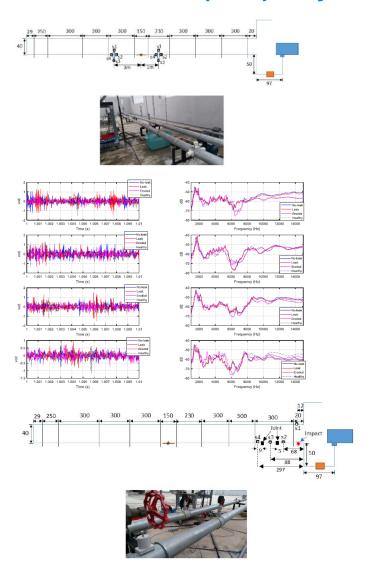
i-PIMSTM: Revolutionizing Pipeline Integrity Management

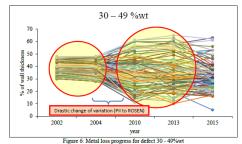
Artificial intelligence minimizing human interventions in performing super-complex analyses and assessments

Courtesy of Google.com

- Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines that work and react like humans.
- For i-PIMSTM, AI will be used to:
 - ✓ Emulate expert opinion / thoughts / judgment / knowledge
 - ✓ Refine risk and integrity analyses for accurate prediction of pipeline time to failure/remaining life
 - ✓ Facilitate real-time and 'split-second' decision making in the event of changing in operating parameters
 - ✓ Knowledge-based for 'PIMS Advisory'

PETRONAS collaborates with local universities in developing i-PIMS[™] with specific scopes for each party





1.	Overall R&D project management.	1.	To study on the suitable techniques to automatically collect data on the pipeline status via Ultra Long Range Acoustic Technology (ULRAT TM).	1.	To research on probabilistic techniques with regards to the pipeline monitoring, prediction and integrity management.
2.	Pilot and commercialization. Establish of procedures and guidelines for field application.				
3.					
		2.	To design and develop mechanisms that can analyse acoustic waves' velocities of corrosive pipeline.	2.	To develop a prediction and decision making system based on probabilistic technique for pipeline integrity.
		3.	To verify and evaluate the proposed mechanisms.		
		4.	To research on Big Data and AI with regards to the pipeline monitoring, and integrity management.		

Currently, Phase 1 i-PIMS[™] is in progress and targeting to achieve Technology Readiness Level (TRL) 4 by end of 2018

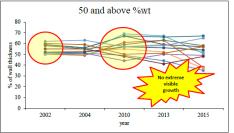


Figure 7: Metal loss progress for above 50 %wt

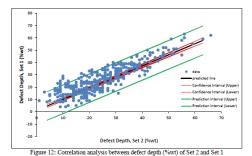
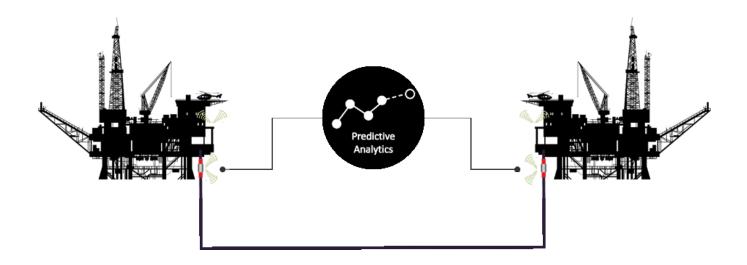


Table 20: Average and standard deviation of corrosion rate before and after removal of

| Matched Data | Average | min/year | Count | Average | Matched Data | Average | min/year | Count | Average | Count | Average | Count | Average | Count | Coun

Phase 2 – Predictive analytics and AI will kick start in Q1 2019 utilizing in-house expertise...


Courtesy of Google.com

Courtesy of Google.com

In conclusion, i-PIMSTM could simplify offshore and onshore pipelines inspection as well as deliver tangible benefits to PETRONAS

- i-PIMS[™] will eliminate internal pipeline inspection, operation intervention and pipeline modification thus eliminating in-line inspection, shutdown deferment and modification to existing pipelines estimated at RM3-5 mill. per pipeline or RM45 75 mil. per year (typically 15 pipelines per year).
- i-PIMSTM can also be used as leak detection system since one of its intended design functionalities is detecting and locating leak.
- i-PIMSTM as PETRONAS Group-wide Standardized Engineering Solution (SES) thus economies of scale and savings can be realized group-wide.

Thank you!

