

Asset Integrity Management Software

Denis FAURE, Principal Consultant

GRTgaz, Technical Division

#WGC2018 FUELING THE FUTURE

HOST ASSOCIATION

PRINCIPAL SPONSORS

Gas transmission... a complex activity

#WGC2018

Gas transmission financial / technical context

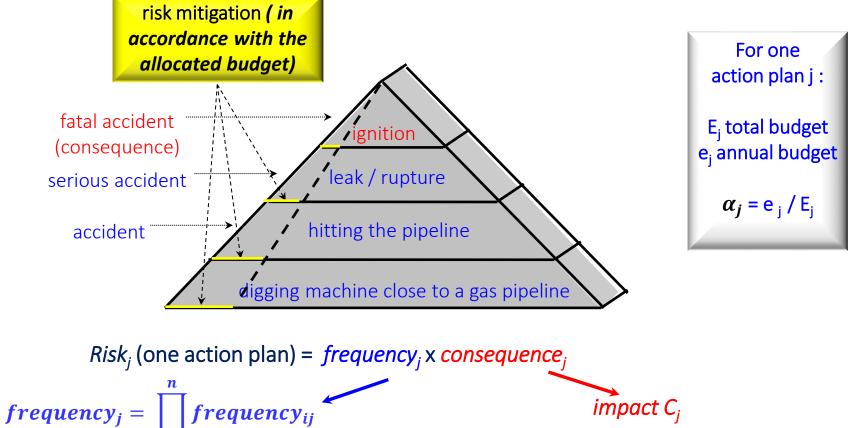
- 1. Gas Transmission operator : high capitalistic activity
- 2. Gas Transmission safety / reliability : high operational activity

need for an efficient Asset Management System

"make sure you spend the <u>right</u>, on the <u>right activity</u>, at the <u>right time</u>"

<u>See ISO 55000</u> : Asset Management = "set of coordinated activities that an organization uses to realize value from assets in the delivery of its outcomes or objectives"

#WGC2018 FUELING THE FUTURE

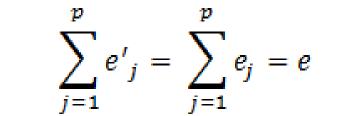

"the best value should be a cost effective one minimizing the operator's overall risk"

Method : Risk notion & assumption

Action plna j Slabs and survey

in-house software AIMS : Asset Integrity Management Software (no global additional cost and minimize the global risk)

Mathematical model behind the software "AIMS"



Goal : for "p" action plans

the global annual budget "e" to be split,

according to a new annual cost distribution e'_i per action plan "j"

financial requirement : no additional cost ->

$$\ge \underline{\text{technical requirement :}} \quad minimize \ residual \ risk \Rightarrow \\ Residual \ overall \ risk = \sum_{j=1}^{p} Residual \ Risk_{j} = \sum_{j=1}^{p} Risk_{j} \ (1 - \frac{e'_{j}}{E_{j}})^{n} \\ \hline GRIgaz$$

#WGC2018 FUELING THE FUTURE

How to assess in practice the risk for the company

Risk is an empirical concept, *Risk* = *frequency* x *consequence*

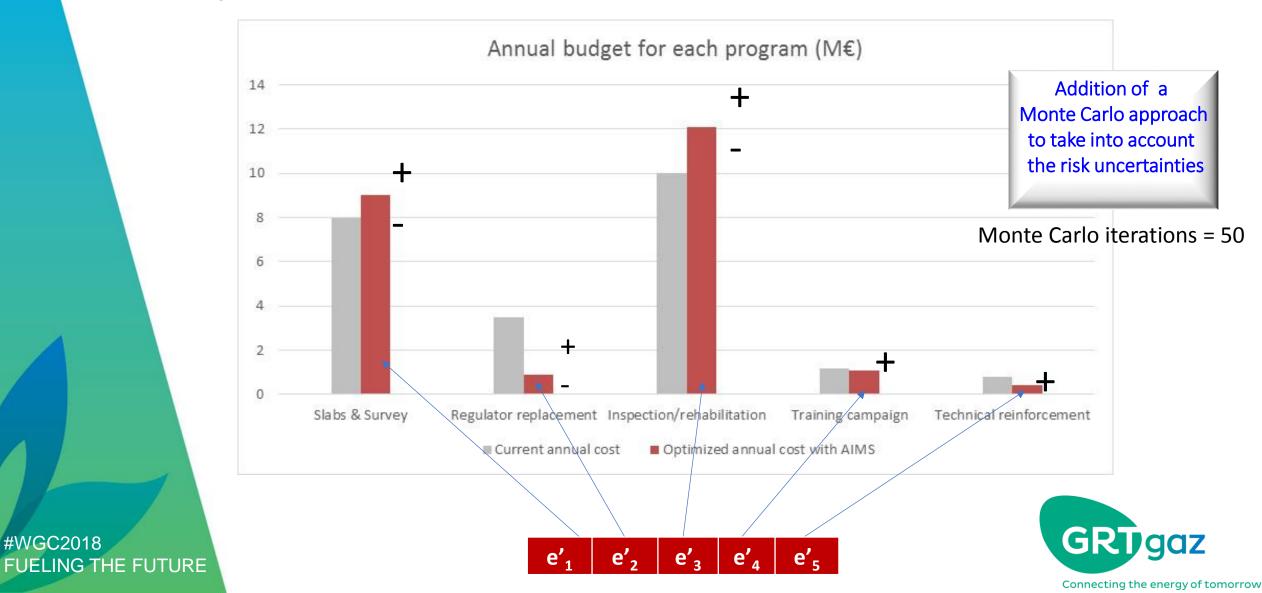
• *Frequency* : given by history and past event.

- Consequence : more subjective and evaluated after analysis of all dreaded events for the company.
 - Probable causes : listed for all these dreaded events.

	 Risk level of 	Dreaded events	Consequence level	Causes	Frequency of causes/events	Risk level of causes/events
	"	December of	20	Landslide areas	2.10 ⁻²	0.4
	"cause a" =	Breach on a pipe		Third party Interference	4.10 ⁻¹	8
	∑ "risk levels" of all 🔰			Metal corrosion	5.10 ⁻¹	10
	couples		10	Landslide areas	6.10 ⁻²	0.6
	,	Leaking pipe		Third party interference	8.10 ⁻¹	8
	"cause a" / "event".			Metal corrosion	1	10
		Gas supply	5	Obsolete regulators	8.10 ⁻¹	4
#WGC2018		interruption		Wrong maneuver	2.10 ⁻¹	1
FUELING THE FU	TURE					_

How to determine the budget used to mitigate the risk

#WGC2018 FUELING THE


- A maintenance or an investment program fights against one or several causes
- A cause may be targeted by one or several programs.
- → A matrix, gives the final risk level borne by each program

					Maintenance / investment programs				
e' ₁	e' ₂ e' ₃ e' ₄ e' ₅	Causes	Risk level	Slabs & Survey	Regulator replacement	Inspection/ rehabilitation	Training campaign	Technical reinforcement	
	AIMS for optimization	Landslide areas	1					100%	
		Third party interference	16	95%			5%		
		Metal corrosion	20			100%			
		Obsolete regulators	4		90%		10%		
	Wrong maneuver	1		20%		80%			
		Risk level		15	4	20	2	1	
FUTURE		Initial annual cost		e 1	e ₂	e 3	e4	e 5	

Study case :

#WGC2018

Final conclusion

- Based on risk assessment, the present approach contributes to asset management. (Only technical risks were considered).
- The approach may offer a smooth transition in order to optimize resources.
- Others options :
 - 1. do better with no additional cost (prevailing option)
 - 2. do your best with less cost (shortage situation)

"make sure you spend the <u>right</u>€, on the <u>right activity</u>, at the <u>right time</u>"

APPENDIX

Authors

- Agathe Lesigne, GRTgaz Technical Division agathe.lesigne@grtgaz.com
- Denis Faure, GRTgaz Technical Division <u>denis.faure@grtgaz.com</u>
- Samir Akel, GRTgaz Technical Division <u>samir.akel@grtgaz.com</u>

Mathematical model behind the software "AIMS"

<u>Goal</u>: for "p" action plans the global annual budget "e" to be split according to a new annual cost distribution e'_j per action plan "j", with respect to :

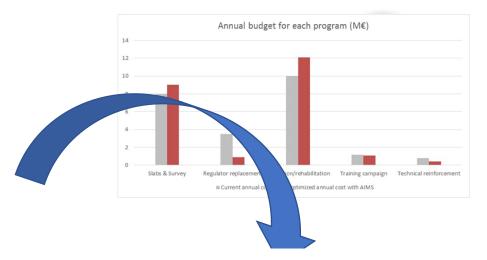
financial requirement : no additional cost ->

#WGC2018

FUELING THE FL

$$\sum_{i=1}^{p} e'_{i} = \sum_{i=1}^{p} e_{i} = e$$

$$\blacktriangleright \text{ technical requirement :} \quad \text{minimize residual risk } \Rightarrow$$

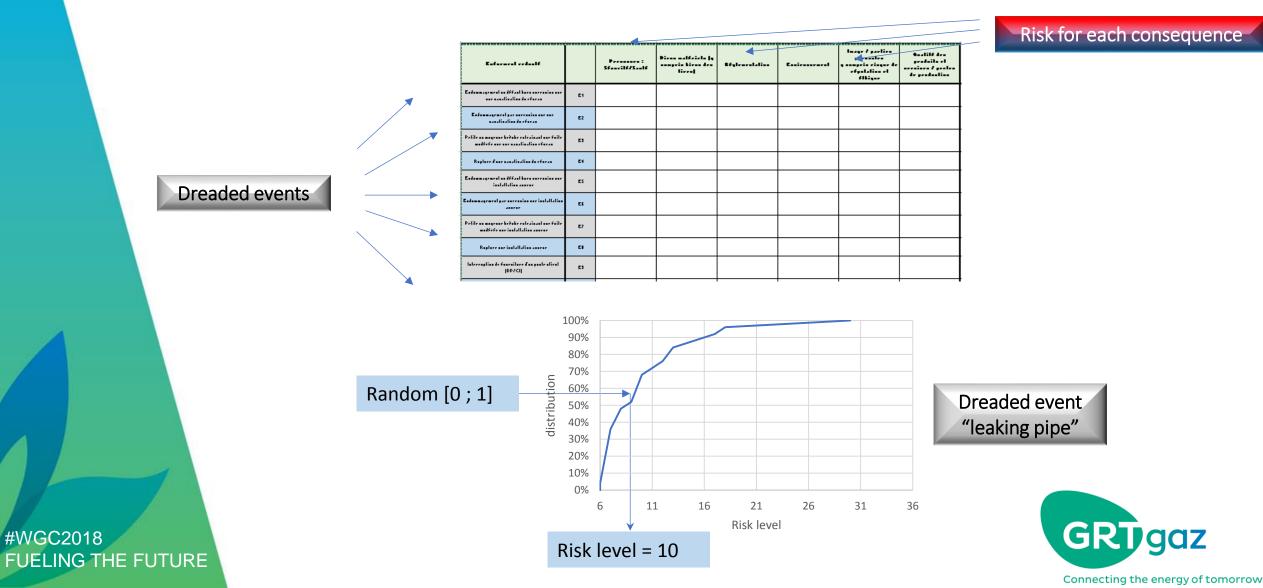

$$Residual overall risk = \sum_{j=1}^{p} Residual Risk_{j} = \sum_{j=1}^{p} Risk_{j} (1 - \frac{e'_{j}}{E_{j}})^{n}$$

$$Residual Risk_{j} = [\prod_{i=1}^{n} (frequency_{ij} \cdot (1 - \alpha_{j}))] \cdot C_{j} = Risk_{j} (1 - \alpha_{j})^{n}$$

Full fictitious case study

- threat 1 : third party interference
- threat 2 : obsolete regulators
- threat 3 : metal corrosion
- threat 4 : wrong maneuver
- threat 5 : landslide areas

Action plan	Risk level	Initial annual cost	Optimized annual cost with AIMS
Slabs & Survey	15	8 M€	9 M€
Regulator replacement	4	3.5 M€	0.9 M€
Inspection/rehabilitation	20	10 M€	12.1 M€
Training campaign	2	1.2 M€	1.1 M€
Technical reinforcement	1	0.8 M€	0.4 M€
	total	23.5 M€	23.5 M€



Monte Carlo approach and expert survey for risk assessment

• A risk matrix (17x6) to fill in was sent to GRTgaz experts (50)

27th WORLD GAS JUNE 25-29

CONFERENCE

